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1. Introduction

The motivation for the present paper arises from the need to further understand experimental
results obtained during wood cutting tests using industrial bandmills. The experimental results
show two features of particular interest:

(1) Vibration instability occurs within a narrow speed region at a frequency slightly greater than
the natural frequency of the excited mode [1–4]. The experimental results are not well predicted by
an undamped stability analysis of the regenerative forces caused by the cutting [4–6].

(2) The vibration response of the blade is characterized by the presence of three frequency
peaks: one at the tooth passing frequency, one above and one below with the frequency difference
between these peaks corresponding closely to the frequency at which the saw was rotating [2,6].
The dominant vibration response is due to the excitation component at the lowest frequency.

In order to investigate (1), regenerative damping was introduced into the model, and the results
of this investigation were reported in Ref. [7]. In order to investigate (2), a modulated forcing
function is introduced into the analysis and the present paper discusses the response
characteristics that arise. The purpose of this work is to investigate the effect of system variables
on the forced vibration response. In the context of saw vibrations the results obtained will assist in
the determination of the influence of different parameters upon the vibration characteristics of
the saw.

Unwanted vibrations in material machining processing, such as chatter in machine tools [8–10]
and washboarding in wood sawing [1–4] are often caused by regenerative cutting forces. Active
vibration control systems may also suffer from instability problems due to unavoidable time
delayed forces [11–13]. The general class of mathematical problems into which the present
problem falls, that of differential difference equations, has an extensive mathematical literature
[14–16]. Specific engineering studies on the dynamic stability of a single-degree-of-freedom system
(s.d.o.f.) subjected to time-delayed forces have been studied in a number of papers [12,13]. The
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present paper discusses the characteristics of the forced response of such a self-excited system due
to a modulated excitation, including the influences of the regenerative force, the modulating
frequency, the system damping and the regenerative damping.

2. A regenerative system subjected to modulated force

Fig. 1 shows a s.d.o.f. system with mass m; system damping coefficient c and spring constant k;
subjected to a regenerative stiffness force Fr and a regenerative damping force Fd defined by

Fr ¼ �k1½xðtÞ � xðt � TÞ�; Fd ¼ �c1½ ’xðtÞ � ’xðt � TÞ�; ð1; 2Þ

where k1 is the regenerative stiffness force coefficient, c1 is the regenerative damping coefficient,
and xðtÞ is the displacement. T is a system time delay, which is assumed to be constant. In a
machining process, this time delay corresponds to the period of tooth passage of a cutter.

During milling or sawing operations, the work piece experiences a number of periodic cutting
forces. Some of these forces fluctuate at the tooth passing frequency and may be modulated by
forces that result from lower-frequency characteristics of the tool. In this work, it will be assumed
that the main applied force fluctuates at a frequency ot and its amplitude varies with time at a
frequency or; called the modulating frequency, which is assumed to be much lower than the
original excitation frequency. Thus, the applied force in this model is given by

fmðtÞ ¼ A0ð1þ am cosortÞ cosott ¼
X3

i¼1

Fmi cosoit; ð3Þ

where

Fm1 ¼ A0; Fm2 ¼ Fm3 ¼ A0am; ð4Þ

oi ¼ otð1� diÞ or o ¼ otð1� dÞ; ð5Þ

d1 ¼ 0; d2 ¼ �p; d3 ¼ p and p ¼ or=ot: ð6Þ
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Fig. 1. A s.d.o.f. system subjected to regenerative forces and a modulated external force whose primary excitation

frequency is the reciprocal of the time delay of the regenerative forces.
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In the above equations, A0 is the amplitude of the unmodulated force function, am the amplitude
of the modulation function, or the modulating frequency, and ot is the primary excitation
frequency, ot ¼ 2p=T (T is the time delay); d is the modulating frequency factor and p is the
modulating frequency ratio. It is seen that the applied force fmðtÞ contains three components at the
frequencies otð1� pÞ; ot and otð1� pÞ; respectively.

The system is governed by the equation of motion

.xðtÞ þ 2zdon½ ’xðtÞ � rd ’xðt � TÞ� þ o2
n½ð1þ rkÞxðtÞ � rkxðt � TÞ� ¼ f ðtÞ; ð7Þ

where on ¼
ffiffiffiffiffiffiffiffiffi
k=m

p
; and rk ¼ k1=k is the stiffness ratio. zd is the sum of the system damping ratio z

and the regenerative damping ratio zc; i.e.,

zd ¼ zþ zc ¼
c

2mon

þ
c1

2mon

; ð8Þ

rd ¼ zc=zd is defined as the relative damping ratio; f ðtÞ ¼ fmðtÞ=m is the modulated excitation.

3. Response to modulated excitation

The homogeneous solution of Eq. (7) governs the system stability characteristics that have been
discussed in a companion paper by the authors [7]. The instability regions of such a self-excited
system have been determined by considering the effects of the system damping, regenerative
damping and regenerative force. In this paper attention will be confined to the response of the
system to the specific forcing function f ðtÞ:

The particular solution of Eq. (7) is the sum of the solutions to the three force components
given by Eq. (3). The steady state response of the system to each excitation component can be
expressed in the form

xiðtÞ ¼ Ai cosoi t þ Bi sinoi t; ð9Þ

where Ai and Bi are constants, i ¼ 1; 2 and 3.
The magnitude of the response to the applied forces is given by

jxiðtÞj ¼ XiðoÞFmi=k; ð10Þ

where the magnification factor XiðoÞ for each excitation component is

XiðoÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Ziðrt; di; rk; z; rdÞ
p ; ð11Þ

Ziðrt; di; rk; z; rdÞ ¼ ½1þ rk � rk cos 2pdi � r2ti � 2zcrti sin 2pdi�2

þ ½rk sin 2pdi þ 2zdrtið1� rd cos 2pdiÞ�2; ð12Þ

rti ¼ ð1þ diÞrt and rt ¼ ot=on; ð13Þ

where rt is the excitation frequency ratio. The response to this modulated excitation can be then
expressed by

xðtÞ ¼
X3

i¼1

Fmi

k
XiðoiÞ cosðoit þ fiÞ; i ¼ 1; 2 and 3: ð14Þ
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It is seen that the vibration amplitude is proportional to the force amplitude A0; the modulation
factor am and the magnification factors XiðoÞ: It can be seen in the following discussion that the
magnification factors of this system are significantly different from those of a conventional system
without a regenerative force.

3.1. Response of the system without regenerative damping ðzc ¼ 0Þ

Three magnification factors corresponding to three excitation components at the frequencies
oi ¼ otð1þ diÞ; i ¼ 1; 2 and 3, are shown in Fig. 2. The peak magnification factor for each
frequency component can be obtained by maximizing the magnification factor XiðoÞ defined by
Eq. (11). For the given parameters d; rk; and z; the excitation frequency ratio rt; at which the value
of the function Z is minimized can be found numerically from the condition @Z=@rt ¼ 0; i.e.,

rti½r2ti � 1� rkð1� cos 2pdÞ� þ z½rk sin 2pdþ 2zrti� ¼ 0: ð15Þ

If the stiffness ratio rk{1=ðz sin 2ppÞ; the solutions for this equation for d ¼ 0 and 7p are given
by

rti ¼
1

1þ di

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2z2

q
or oti ¼

on

1þ di

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2z2

q
: ð16Þ

The peak response occurs when

Zi minðdi; rk; zÞ ¼ ½rkð1� cos 2pdiÞ þ 2z2�2 þ 2z
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2z2

q
þ rk sin 2pdi

� �2

; ð17Þ

or

Z1minð0; rk; zÞ ¼ 4z2ð1� z2ÞE4z2; ð18Þ

Z2minð�p; rk; zÞ ¼ ½rkð1� cos 2ppÞ þ 2z2�2 þ 2z
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2z2

q
� rk sin 2pp

� �2

; ð19Þ

Z3minðp; rk; zÞ ¼ ½rkð1� cos 2ppÞ þ 2z2�2 þ 2z
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2z2

q
þ rk sin 2pp

� �2

: ð20Þ
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Fig. 2. Effect of primary excitation frequency on magnification factor for the given parameters, z ¼ 0:002;
zc ¼ 0; rk ¼ 0:02 and p ¼ 0:02; and different modulating factors: 2 	2	; d ¼ 0; ——, d ¼ �0:02; – – – –, d ¼ 0:02:
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The relationship between the three minimized functions, corresponding to the three different
modulating frequency factors, di; satisfies the inequalities

Z2minð�p; rk; zÞpZ1minð0; rk; zÞoZ3minðp; rk; zÞ ð21Þ

provided that

rk ¼
k1

k
prk0; where rk0 ¼

2z
tanðppÞ

E
2z
pp

ð22; 23Þ

is referred to as the critical stiffness ratio. If the regenerative stiffness force coefficient k1 is smaller
than the critical value rk0k; the peak magnification factor X2ðoÞ for the frequency variation
d ¼ �p is largest and the dominant vibration response is due to the excitation component at the
frequency otð1� pÞ: Consequently, the following discussion will focus on the term Z2min

corresponding to the peak magnification factor.
Fig. 3 shows the excitation frequency ratio at which the peak magnification factor occurs for

different modulating frequency factors as a function of the stiffness ratio. It is seen that the ratios
of the resonant frequencies to the resonant frequency of the non-regenerative damped system are
approximately equal to 1=ð1þ diÞ if the stiffness ratio rko0:1: Above a stiffness ratio of 1 the
excitation frequency ratio corresponding to the peak response increases rapidly.

The corresponding peak magnification factors, as shown in Fig. 4, vary significantly with the
stiffness ratio rk ¼ k1=k and the modulating frequency factor d: The magnification factor has a
significant peak over a certain range of stiffness ratios when do0: The peak magnification factor
of the excitation component at the frequency otð1� pÞ reaches its maximum value if the stiffness
ratio satisfies @Z2minð�p; rk; zÞ=@rk ¼ 0: This condition leads to

rk1 ¼
k1

k
¼

z
tanðppÞ

E
z
pp

ð24Þ

that corresponds to one-half of the critical stiffness ratio.
The peak response component to the excitation component at the frequency otð1� pÞ is larger

than the components at the frequencies ot and otð1þ pÞ if the stiffness ratio satisfies inequality
(22). For the excitation component at the frequency ot; the regenerative force is zero and
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Fig. 3. Effect of stiffness ratio on the excitation frequency ratio corresponding to the peak magnification factor for the

given parameters, z ¼ 0:002 and zc ¼ 0; and different modulating frequency factors: 2 	2	; d ¼ 0; ——, d ¼ �0:02;
2 	 	2	; d ¼ �0:05; — —, d ¼ 0:02; – – –, d ¼ 0:05:
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therefore does not affect the magnification factor. For the component of frequency otð1þ pÞ; the
regenerative force always provides an equivalent positive damping and an extra stiffness for this
system. For the excitation at the frequency otð1� pÞ; the regenerative force gives rise to negative
‘‘damping’’ when the stiffness ratio satisfies inequality (22). It gives rise to positive ‘‘damping’’
when the force coefficient is greater than this critical value. If rk does not satisfy inequality (22),
the resonant frequency for da0 increases gradually, as shown in Fig. 3, and the magnification
factor decreases rapidly (Fig. 4). In this case, the dominant response is that due to the excitation
component at the frequency ot:

Fig. 5 shows how the magnification factors vary with the excitation frequency for a given range
of the parameter p: As expected, the peak magnification factor for d ¼ 0 does not change since
there is no regenerative effect at this frequency. The peak magnification factor for d > 0 decreases
slightly. In this case, if pp0:01 or pX0:06; the peak magnification factor for d ¼ �p is small.
When p ¼ zk=ðpk1Þ corresponding to one-half of the critical stiffness ratio the magnification
factor achieves a maximum value.
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Fig. 5. Variation of magnification factor with excited frequency ratio for the given parameters, z ¼ 0:002; zc ¼ 0 and

rk ¼ 0:02; and different modulation factors: 2 	2	; d ¼ 0; ——, d ¼ �p; – – – –, d ¼ p:

Fig. 4. Variation of magnification factor with the stiffness ratio for the damping ratios, z ¼ 0:002 and zc ¼ 0; and
different modulating frequency factors: 2 	2	; d ¼ 0; ——, d ¼ �0:02; 2 	 	2	; d ¼ �0:05; — — , d ¼ 0:02; – – –,

d ¼ 0:05:
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The system damping affects three peak magnification factors. Fig. 6 shows how the three peak
magnification factors vary with the system damping ratio. The magnification factor corresponding
to the excitations for d ¼ 0 decreases with the system damping ratio. When the system damping is
very light, the magnification factor corresponding to the excitation at the frequency ot ðd ¼ 0Þ has
the largest values. Its response then dominates the vibration of the system. The magnification
factor corresponding to the excitation at otð1þ pÞ ðd > 0Þ decreases monotonically with increased
damping ratio. For a given regenerative force coefficient k1 and modulating frequency factor p;
the peak magnification factor ðd ¼ �pÞ is maximized with respect to the system damping ratio z if
the damping ratio satisfies

@Z2minð�p; rk; zÞ
@z

¼ 0: ð25Þ

Assuming that the modulation frequency is much lower than the original excitation frequency,
i.e., p{1; this leads to the result that

zpeak ¼
rk

2
sin 2ppEpprk ¼ ppk1=k: ð26Þ

If the system damping ratio zoppk1=k; the effective damping in the system is negative and
the magnification factor increases with the damping ratio. When the system damping ratio is
greater than this value, the magnification factor decreases monotonically with the damping
ratio.

3.2. Response of the system with regenerative damping ðzca0Þ

If the primary damped system is also subjected to regenerative damping, the steady state
response to the modulated excitation will be significantly modified. The frequency at which peak
magnification occurs, for given parameters d; rk; z and zc; can be determined based on the
excitation frequency ratio rti that satisfies @Z=@rti ¼ 0; i.e.,

½r2ti þ 2zcrti sin 2pd� 1� rkð1� cos 2pdÞ�½rti þ 2zc sin 2pd�

þ zdð1� rd cos 2pdÞ½rk sin 2pdþ 2zdrtið1� rd cos 2pdÞ� ¼ 0: ð27Þ
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Fig. 6. Variation of peak magnification factors with the system damping ratio for the given parameters, rk ¼ 0:02 and

zc ¼ 0; and different modulating frequency factors: 2 	2	; d ¼ 0; ——, d ¼ �0:02; – – – –, d ¼ 0:02:
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An approximate solution for rti is found with the assumption, ðrkz� zcÞ sin 2pdi{1; and given by

rti ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Rti

p
� 1:5zc sin 2pdi; ð28Þ

Rti ¼ rkð1� cos 2pdiÞ þ ð0:5zc sin 2pdiÞ
2 � 2z2dð1� rd cos 2pdiÞ

2: ð29Þ

In the case where d ¼ 0; rti ¼ rt and the peak magnification factor is the same as that of a
conventional damped system with no regenerative forces. The maximum magnification factor
X0ðonÞE1=ð2zÞ; which will be taken as a reference magnification factor for the following
discussion. In the case of d ¼ 7p; the excitation frequency ratios rti given by Eq. (28) have very
small shifts away from one. For simplicity, the peak magnification factors will be approximated
by their values at rti ¼ 1: These peak values are associated with the functions given by

Zi minðdi; rk; z; zcÞ ¼ ½rkð1� cos 2pdiÞ � 2zc sin 2pdi�2

þ ½rk sin 2pdi þ 2zdð1� rd cos 2pdiÞ�2 ð30Þ

or

Z1minð0; rk; z; zcÞ ¼ 4z2; ð31Þ

Z2minð�p; rk; z; zcÞ ¼ ½rkð1� cos 2ppÞ þ 2zc sin 2pp�2

þ ½�rk sin 2pp þ 2zdð1� rd cos 2ppÞ�2; ð32Þ

Z3minðp; rk; z; zcÞ ¼ ½rkð1� cos 2ppÞ � 2zc sin 2pp�2

þ ½rk sin 2pp þ 2zd ð1� rd cos 2ppÞ�2: ð33Þ

Fig. 7 illustrates the variation of the peak magnification factors with the stiffness ratio for
z ¼ zc ¼ 0:002: The factors for d > 0 decrease steadily with the stiffness ratio and are always less
than the reference magnification factor for d ¼ 0: The factors for do0 are greater than the
reference factor in the ranges ½Ia1; Ib1� for d ¼ �0:02 and ½Ia2; Ib2� for d ¼ �0:05: They reach the
maximum values at rkE0:032 and rkE0:013; respectively. Compared with the case of zc ¼ 0
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Fig. 7. Variation of magnification factor with the stiffness ratios for the given damping ratios, z ¼ zc ¼ 0:002 and

different modulation frequency factors: 2 	2	; d ¼ 0; ——, d ¼ �0:02; 2 	 	2	; d ¼ �0:05; — — , d ¼ 0:02; – – –,

d ¼ 0:05:
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shown in Fig. 4, the regenerative damping reduces the peak values, but it does not affect the
locations of the peaks.

The variation of the peak magnification factors with the regenerative damping for a given
stiffness ratio is shown in Fig. 8. The peak magnification factors greater than the reference factor
occur in the range ½Ja1; Jb1� for d ¼ �0:02 and in the range ½Ja2; Jb2� for d ¼ �0:05: The peak
magnification factor for d ¼ �0:05 and rk ¼ 0:013 approaches infinity as zc-� 0:001:

It is seen from Eqs. (31) and (33) that if zc ¼ 0; Z3minðp; rk; z; 0Þ > 4z2: If zc > 0; @Z3min=@zc > 0
and Z3min increases with zc: Then it is concluded that

Z1minð0; rk; z; zcÞoZ3minðp; rk; z; zcÞ ð34Þ

holds for small positive parameters. The inequality

Z2minð�p; rk; z; zcÞpZ1minð0; rk; z; zcÞ ð35Þ

holds if the parameters rk and zc are selected such that they lie inside an ellipse described by

ðrk � rk1Þ
2

ðrk0=2Þ
2

þ
ðzc þ z=2Þ2

ðrk0=4Þ
2

¼ 1; ð36Þ

where

rk0 ¼
2z

sinðppÞ
; rk1 ¼

z
tanðppÞ

: ð37Þ

Fig. 9 illustrates two ellipses defined in the domain ðrk; zcÞ with the center at ðrk1;�z=2Þ for
d ¼ �0:02 and �0:05: The lengths of the major and minor axes of each ellipse are rk0 and
rk0=2; respectively. The solid line indicates that the parameters in this system are positive. The
lower half of an ellipse with a dashed line indicates that a negative regenerative damping
ratio is used. If the parameters, d; rk; z and zc; selected lie inside an ellipse, then Z2minoZ1min or the
peak magnification factor for d ¼ �p is the largest one. If they are exactly on the ellipse, then
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Fig. 8. Variation of magnification factors with the regenerative damping ratio for the given parameters, z ¼ 0:002 and

rk ¼ 0:013; and different modulation frequency factors: 2 	2	; d ¼ 0; ——, d ¼ �0:02; 2 	 	2; d ¼ �0:05; — —,

d ¼ 0:02; .......... , d ¼ 0:05:
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Z2min ¼ Z1min and the factors for both d ¼ 0 and d ¼ �p are the same. If the parameters lie
outside the ellipse, then Z2min > Z1min and the factor for d ¼ �p is less than the reference factor.
It is noted that the size and the location of the ellipse depend on the system damping ratio z and
the modulating frequency factor p: A larger system damping ratio or a smaller modulating
frequency factor gives rise to a larger ellipse in which the dominant response is caused by the
excitation with d ¼ �p:

For parameters corresponding to points within this ellipse, the peak magnification factor
X2½on=ð1� pÞ� for d ¼ �p can be maximized by minimizing Z2min with respect to the parameters,
rk; zc and p: The results are given by

@Z2min

@rk

¼ 0 - rk ¼
z

tanpp
; ð38Þ

@Z2min

@zc

¼ 0 - zc ¼ �
z
2
; ð39Þ

@Z2min

@p
¼ 0 -

ðrk � %rk1Þ
2

%r2k0
þ

ðzc þ z=2Þ2

ð%rk0=2Þ
2

¼ 1; ð40Þ

where

%rk0 ¼
z

sin 2pp
; %rk1 ¼

z
tan 2pp

: ð41Þ

It is seen from Eqs. (38)–(40) that the minimized function Z2min for a given system damping z
and a given modulating frequency factor p occurs at the center (point A1 or A2) of an ellipse
shown in Fig. 9. In this case, the energy supplied by the regenerative force and the negative
regenerative damping completely cancel the energy consumed by the system damping. This system
behaves as an undamped system with an infinite magnification factor at the resonant frequency.

ARTICLE IN PRESS

Fig. 9. A bigger and a smaller ellipses defining the variation of parameters for the peak magnification factors for two

modulating frequency factors d ¼ �0:02 and �0:05; respectively.
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For a constant regenerative damping ratio zc; such as zc ¼ z ¼ 0:002; the function Z2min varies
with the stiffness ratio rk along a line passing Points Ia1; Ia2; Ib2 and Ib1 that corresponds to four
points shown in Fig. 7. The minimum value of this function occurs at the intersection, Point B1 or
B2; of this line and the minor axis ðJa2 Jb2 or Ja3 Jb3Þ of the ellipse. If the stiffness ratio rk is given,
the function Z2min varies with the regenerative damping zc along a line, such as Ja1 Jb1 or Ja2 Jb2

that corresponds four points shown in Fig. 8. The minimum value of this function occurs at
zc ¼ �z=2 and the function value increases as the regenerative damping moves away from this
point along a line parallel to the axis zc:

The effect of the modulating frequency factor on the peak magnification factor can also been
studied using the ellipse. For a given system damping ratio z; the size and the location of the
ellipse vary with the modulating frequency ratio p: The minimum value of the function Z2min

always occurs at the center ðrk1;�z=2Þ: If the modulating frequency ratio p-0; the ellipse size
approaches infinity. In this case, the system will be subjected only to an exciting force and the
regenerative forces due to the steady state motion will vanish no matter what stiffness ratio and
regenerative damping ratio are selected.

4. Conclusions

A study of the forced vibration response of a s.d.o.f. system subjected to regenerative and
modulated forces has been conducted. The analytical relationships between the system damping
ratio, the regenerative stiffness force, the regenerative damping force, the modulated excitation
and the response have been established.

If the amplitude of an applied harmonic force at a frequency equal to the reciprocal of the time
delay is modulated by a low-frequency component, the force consists of components at three
distinct frequencies. The corresponding resonance peaks occur at the frequencies that are slightly
lower, higher than and equal to the resonant frequency of the unmodulated system. If the ratio of
the regenerative force coefficient to the system spring constant is small, the maximum peak-
magnification factor is caused by the excitation component at the lowest modulated frequency.
This interesting behavior is due to the coupling effect of the time delay of the regenerative force
and the frequency of the modulated forces.

The effects, on the magnification factors of the system, of four factors: the system damping, the
regenerative damping, the regenerative force coefficient and the modulating frequency are closely
coupled with each other. The parameters that give rise to the maximum magnification factors
have been determined analytically for particular conditions. In general, the peak magnification
factor of the higher frequency component is not greater than the peak factor of the unmodulated
frequency component. The only factor affecting the peak magnification factor of the unmodulated
frequency component is the system damping. It is shown that increasing the system damping
decreases the response magnitude. Whether the system damping increases or decreases the
magnification factor of the lower-frequency component is dependent on the stiffness ratio, the
modulating frequency and the regenerative damping. The coupling effects of these variables have
been described geometrically in terms of an ellipse in the plane of the stiffness ratio and the
regenerative damping ratio. The peak magnification factor can be determined with respect to these
parameters using the geometry of the ellipse.
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